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0. Introduction

For a nonnegative integer s and a finite simplicial complex X,
let BS(K) denote the s-dimensional Betti number of K and let fs(K)
denote the number of s-simplices of K. Our theorem, like Poincaré's,
applies to combinatorial manifolds M, but it concerns the numbers fs(M) ;
instead of the numbers BS(M) «» One of the formulae given below is used '
by the author in [5] to establish a sharp upper bound for the number of
vertices of n-dimensional convex polytopes which have a given number
1 of (n -1) faces. This amounts to estimating the size of the
computation problem which may be involved in solving a system of 1
linear inequalities in n variables, and was the original motivati;an

for our study.

A combinatorial n-manifold is a finite simplicial n-complex M
such that for each s-simplex o & M", the linked complex L(s° M)
has the same homology groups as an (n - s - 1)-sphere; analogously, an

Fulerian n-manifold is defined here by the condition that L(GS,MI.I)

slways has the same Buler characteristic 1 - (- D" a8 an (n -8 -1)-

sphere, where of course the Euler characteristic of a finite complex X
[+0] (o]
is the alternating sum x(XK) = 3 (- 1)°f_(K)(= 3(- 1)538(}{)). Let
. 8=0 s=0
E}n (resp. gn) denote the class of all Bulerian (resp. orientable combina-’

torial) n-manifold, and for each M & E  let

(1) = (B(M),B (1), e+ +,p (M) and £(M) = (£,(10),£, (1) ,.--,5 (1))

Then define

and  £(E") = {£(M):MeE"} C 3“*1.

~

B(gn) - {B(M):Msgn} C §n+l




Poincaré's theorem (Bq(M) =B M)) implies that the linear

n-s
span of the set B(QF) is an {(n + 2)/2)-dimensional subspace of

§F+l (where {k)» denotes the greatest integer < k), and the theorem

exhibits a convenient basis for that subspace. The same results are
obtained here for the linear span of f(gn), which has a convenient
basis involving binomial coefficients in a simple way. For example,

7

bases for the linear spans of f(§6) CR' and f(gﬁ) C_Eg are as

follows:
6
£ (2,0,0,0,0,0,0) :(1:332’0)0)0:0) ’(0,194,5)2,0,'0) J(O"0,1)5)9’732) 3
§7: (1914030,0’0)0)0) )(O’l’z)l)o30)o’o) ?(0’0’1!3’31110’0) ’(0 ’~O,O’l’4"6’l“!l) .

(Note that (1,3,2) = (1,2,1) + (0,1,1),(1,4,5,2) = (1,3,3,1) + (0,1,2,1),

ete.)

Having a convenient basis for the linear span of f(En) Jleads to
a useful characterization of the linear relations which must subsist
among the numbers fS(M) for all ‘Magn. It turns out that when
n=2u-1 (whence x(M) =0 for all Me@n) the numbers fn(M),
fn_l(M),°'-,fu(M) can be expressed linearly in terms of fu_l(M),~'-,
fl(M)3fb(M) (the expressions being valid for all Me@?), while when
n=2u -~ 2 the numbers fn(M),fn_l(M),"',fu_l(M) admit linear expres-

sions in terms of fu_2(M),"’,fo(M):X(M)-

Our approach ls of a purely combinatorial nature, involving neither
subdivision nor homology. The arithmetical identities of §1 are used in
§2 to prove the main rTesult, a theorem concerning abstract incidence
systems which exhibit some properties of those which are dual to
Eulerian manifolds. Applications to Fulerian manifolds and convex

polytopes appear in §3.




For the elementary properties of complexes and convex polytopes

which are employed here, the reader may consult Alexandroff and Hopf [1]

and Weyl [6]. For a treatment of the Euler characteristic which is
well suited to the present elementary combinatorial approach, see

Hadwiger [3] or Klee [4].

Helpful comments were supplied by C. B. Allendoerfer, E. H. Spanier,

and H. S. Zuckerman.




1. Some arithmetical identities

This section contains some arithmetical identities involving
binomial coefficients, to be employed in §2. Though these may appear
in the literature, we have not found them there and thus include their
proofs as an aid to the reader. We agree that (?) is defined in the
usual way for all integers n and r -- positive, zero or negative

(cf. Feller [2, p.40]), and will use freely the basic recursion

@=C2h G,

1.1 PROPOSITION For all nonnegative integers J and Kk,

j c s . . \
,%v1VQM1;%=<-n%k{9.

Proof. Let V(i,3,k).= (- 1)1@)(1;:3), whence

V(5K = - 0MED + Chudh - -

= V(1,510 + V(5,31,k-1) - (- DIEED AN - A 4 )« (A =

V(i,3-1,k) + V(i,j-1,k-1) - v(i-1,j-1,k) ~ 2v(i-1,j-1,k-1) - V(i-1,j-1,k-2).

4 .
Now let U(j,k).= = V(i,j,k). Corresponding to the five terms

i=0
v(*,j - 1,*) in the above expression for V(i,j,k), we obtain the

five bracketed terms in the equation
u(j,k) = [u(j-1,k) + V(§,3-1,%) ] + [0(j-1,k-1) + v(J,i-1,k-1)]
= [V(-1,3-1,%) + U(5-1,k) ] - 2(v(-1,3-1,k-1) + U(J-1,k-1)] - [V(-1,§-1,k-2) +

+ U(j-1,k-2)] = - U(j-1,k-1) - U(j-1,k-2).




Now clearly when m = 0, U(m,k} = (- 1)m(k T m) for all integers
k (positive, negative, or zero). Suppose the same is known for m=j -1

and consider the case of U(j,k). We have

U(3k) = - U(§-1,k-1) - 0(J-1,k-2)

i

-1 i
=03 T G0,
so the proof of 1.1 is completed by mathematical induction. |

1.2 PROPOSITION For 0 < j< k,

2k~ -
20 gD <o
Proof. Let h(k,1) . Zﬁgl( 1) and note that
(1) h(k - 1,1) = (k1 + 1) - h(k,1).

Indeed, (1) asserts that

2k—i 2(1—1) _ Zkij—l[(i:i) . (i:;)] ) 2k—1(k y,

reducing at once to
1w k+1(i -1, _ /i~
k-1 ‘k- 2) - (k—l)’

which is easily verified.
2k -] L
Now let T(k,j).= s (-1) (2k—j-i)h(k’i)' We want to show that

1=2k-2]
T(k,j) = 0 whenever 0 < j < k. Since effective summation in the

expression for T(k,j) is over the range max(2k-2j,k) <1 < 2k-j,
it is easily verified that T(k,k-1) =0 for k > 2, and in particular

T(2,m) = 0 whenever O < m < 2. Now suppose it is known that T{(k-1,m) =0




whenever 0 <{m < k -1 and that T(k,m) =0 whenever j < m<k

(where j < k - 1). We can show that T(k,J]) =0 and by proving that
(2) T(k,j) + T(k,j+1) + T(k-1,3) + T(k-1,j-1) = 0.

To verify (2) we note that

) = 5 (- a0 :
! 2k-2 2k-j-1 g ’ g
and, , i
2k-j-1 . ;
Mk 34) + 5 (- DI, I n(k,1), |
2k-2§-2 2h-j--l

with summation always on i, and from (1) it follows that

2k-j-3 2k-j-2

k-1,3) = 5 (-0, 3 On(en) - 2 (DY, S, k), :
2%-2j-3 2k-j-i-1 2k.Dj-2 2k-§-1-2 ’
2k 11, §-1 gl s g
T(k-1,3-1) = = (- D 00T 001 - 5 (- D50 Yh(k,1).
( dk~23+1 k-j-17 ' 2k-2] (2k—j-i—l .

Then (2) is proved by showing that for eack i, the net coefficient of
h(k,i) on the 1eftvside of (2) is equal to zero. For example, when
2k-2) +1 <1< 2 - j ~ 3, this coefficient is equal to (- 1)i ﬂimes
the number

(0 - LI G

J J :
(ucy-a) * (aliia) = (o)~ G2 Coeogen) = (acgaa)

which is equal to zero by the basic recursion used in justifying (1).

The other cases are even simpler. ||




2. A theorem on certain incidence systems

.By the term incidence system we shall mean a finite set X with

an associated incldence function ¢ and dimension function &; ¢ is

a symmetric real-valued function on X x X (that is, ¢(x,7) = o(y,x)
for all x,y & X) and & is a function on X %o a set of integers. For each

element y of X and each integer i, we define

() o= 5 e(y,x).
xeX, d8(x)=1
In the case of special inferest, ¢ agsumes only the values 0 and 1
and is thus the characteristic function of an incidence relation (a
gymmetric subset of X x X); in this case, ui(y) is merely the rumber

of 1i-dimensional elements of X which are incident to y.

The characteristic x(y) of an element yeX 4is defined as the

alternating sum
8(y)

S i
x(y) = 2 (- 1))
. i=0
For d > 1, the system (X,w!b) will be called a d-system provided

it satisflies the following conditlons:

(1) max{s(x): xeX} = d - 1;
(11) x(y) =1 for all yeX with 8(y) > 0;

(11i) whenever yeX and 0 < 8(y) {1 <d -1, then pi(y) = (2::&5;),

Note that these conditions are all satisfied when X is the simplest triangu-
lation of a (d - 1)-sphere (that is, the system of all proper faces of a

d-simplex), o(x,y) =1 when x and y are incident (xCy or xDy)




and = 0 otherwise, and & 1s the usual dimension function.

2.1 THEOREM Suppose the incidence system (X,9,8) is a d-system,

with d=2u -1 or d=2u. For 0<s<d-1, let f denote the
- d-l
number of s-dimensional elements of X, and let f4.= ]2; 5 (- l)SfS. For
5=0

1<3j<u, let 'Y? denote the 2u-vector (Y(;O""’Y?(Zu—l)) where

J _
X (.2u~s)(2u_j -s) when d = 2u-1
Y =
s : J -
(Zu-_j _S) when d = 2u.
Then the vector f = (f‘o,-- ~,f2u_1) is linearly dependent on the u

vectors Yi,---,yi. Further, fd=O when d = 2u.

Proof. For i and j between 0O and 4 -1, 1let

g.i,]‘. . % @(X)Y) .
x,yeX;d(x)=i,s(y)=} :

Then of course 815 = 8y It follows from condition (iii)} that

ub(y) (y) = 1- for all yeX, and then from condition (11) that
o(y) -1 |
b
2 (-0 =1 - (-0t
1=0
Using this equation in conjunction with (1ii) we see that for

1<{m<gd -1,

(1-(-1)Me Foont (- 1)

m - &m0 T m Em(m-1)

I

m—1(<:'l—m+l)f )

d d-1
(d—m)fo - (d—m)fl teeet (- 1) d-m ‘"m

s o F o - e




Hence we obtain the following equations Em for 1 {m<d -1

. - ¢ 4a d-1 d-m+1
(odd m) E: O (d—m)fo - (d_m)fl Foret | dom )fm—l - 2f
. _ ¢ d d-1 d-mtl
(even m) E: O —‘(d—m)fo - (d_m)fl 4ot ( dom )fm—l'
And we have also
- . e d—l
Byt 0= £y - £ 4= D)7y - 26y

These equations are redundant, and we will be concerned only with those

having odd indices, that is, with

U

d
B2 0 (d_l)fO ~.2fl,

d 1

: - i
Eyr 0 =(3.9)f; - (3 3

£y + (G3E, - 28

. . 3 . . . ‘e . . . . . . . .

terminating with E or in other words with

2u-1

(odd d) E,: 0= f. - £+ £, - f

a’ 0 1 2 3

feoek £y - 26,

or

(even d)E } 0 = df -'(d-l)f1 + (d-z)f2 - (d-3)f

-1t 0 RN 2fd—-2 - Rf

3 d-1'

For 1{r<u and 0¢s {2u~-1, let Bis be the coefficient

a
of fS in the equation E2r—l’ where of course Brs =0 for s >2r - 1.

' a _ ,.d d 2u
The u vectors p_ = (ﬁro,-- ’Br(2u—l)>6-§ » 1 {r<u, are linearly
iﬁdependent because the u X u submatrix

a

ps) (L<rdu, 1<odds {2 - 1)

(8

is triangular and has exclusively - 2's along its main diagonal. Let L
denote the u-dimensional linear subspace of Egu which is spanned by

{pi,--n,ﬁi} and let LO denote the orthogonal supplement of L, con-
2u~1
sisting of all vectors ¥y = (Yosreesy ) & R2u such that pX Bd Yy =0
0 2u-]. &5 =0 rs's
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for 1< r < u. Then of course stO, and we will show below that

d d 0] \ 0 . . . :
{Yl""’Yu} CL . S8ince L  1is a wu-dimensional linear space and
since the u wvectors Y%(l < j {u) are easily seen to be linearly
independent, it will follow that f is a linear combination of the
Y?’s. This is the first assertion of 2,1. The second assertion of
2.1 is that if d = 2u, then fd = 0 or in other words the 2u-vector

(1,-1,+++,1 - 1) is orthogonal to the 2u-vector f = (f0,~°-,f2u_1).

For this it suffices (in view of the first assertion) to show that
(1,-1,+++,1 - 1) 4is orthogonal to each of the vectors Y?(l <j<gu).
But recalling the definition of the vectors Yg, we note tﬁat if
d=2u and 1< j<u, then

2u-1 2u-1

5 (- 1)% = S5 3y = (- Ty )*(?
RGN AN N CE AR Ot 2t
z(‘l)j %(_l)i(i):o’
i=0

where the final equality follows from 1.1 with k = 0.

To complete the proof we must show that

2u-ly g
[d,r,j]: Z B ¥:. =0 for 1 <r<u, 1<j<u
= Prslis , <
- s=0
Recalling the definition of B>, we see that B = -2, while
, rs’ r(2r-1) ’

d d-s )

—— s '
P = (1) (d—2r+1 for s #2r - 1.

When d =2u -1 and 2r - 1 is not between 2u - 2j and 2u - j,
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the left side of {d,r,j] is given by

2u-1 2u-j

d j - d J
Sioﬁrs(zu - s)(Zu—j*s) - S=éi_2jﬁrs(2u - s)(Zu-j—s)
2u- s, Ty, d-s
= s=§i_2j(— 1) (g6 (B0 =803 500)

. J . L
FlﬂWJEJ—D%pU+3Mig$%

[

where the last equality comes from the substitution 1 = 2u - ] - s.

o 31y i4+j |
But (ifJ)(d—2r+l> = (d—2r+2)(d_2r+2), s0 we can continue the computation
with
' J . .
_ 2u-j, 1odye 14
= (- D& aara) 3 (- 0P
1=0
= (- )™ a2r) (- 13, L3 ) =0
d-2r+2-] ’

where the next-to-last equality comes from 1.1 and the final equallty

results'from the fact that (d—2;12—j) =0 when 2r -1 is not between

20 - 2] and 2u - j.

Now suppose d =2u -1 but 2u -2j<2r~1<2u-~]J.

Correcting the preceding computation to account for the special value

d

of Br(2r—1)’

we see that the left side of [d,r,j] is equal to

2r~l(d—( 2]?—-1) ))

3 d
(@-2042) (3 _ohp3) + Yy(apop) (-2 ~(- 1) d-2r+

) - (2 - (2rA)(, " - 0.

= (d-2r+2) ( 20-3-(2r-1)

J
d-2r+2-3

Suppose finally that d = 2u. When 2r - 1 4is not between

[ O
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2u - 2j and 2u - j, the left side of [d,r,j] is given by

EC D)0 (aome)
8=4-2] I e

N

] s
- 1)d—aizo(_ DD g =

i

(- %9 1) =0,

J ]
(d—2r+l~j)

where we have used 2.1 and the fact that d - 2r +1 - j 1is <0 or > j.

When d - 2j<2r ~1<d - J, correction for the special value of

d
Br(2r—-l)

This completes the proof of 2.1. ||

leads again to the value 0, as in the preceding paragraph.

2.2 COROLLARY Suppose d is a positive integer with d = 2u - 1

or d =2u, and I is a set of integers which includes at least one

from each of the u pairs {0,1},{2,3},“.-,{211 - 2,2u ~ 1}, If two

d-gystems (X,,5) and (X',9',5!') are such that £, = £} for'all
leI (where the pumbers f, and f] are as in 2.1), then f_ = fl

for 0<{s<2u-1.

Proof. Upon examination of the basis system Yi,u-,yi,

this is seen to follow at once from 2.1. ||
The following is also an immediate consequence of 2.1.

2.3 COROLLARY With hypotheses and notation as in 2.1, let X

denote the set of all vectors £ = (50,...’5211_1), e R such that

2u-1 - 2u-1 a
S Ef =0, Then % includes all vectors ¢ such that 2 Ey., =0
s=0 ° % T s=0 ° JF

for 1< j < u.

The next theorem is the one whose dual (given in 3.2 below) will

be applied in [5].
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2.4 THEOREM Suppose d is a positive integer with d = 2u - 1

or d =2u, and t is an integer with 0 <t {u - 1. Then there is ;

dt _ . dt db f

a vector § = (Eu , "’EQu—l) such that ‘.)
2u~-1 |

- dt |

ft = 'Z Ei fi }

i=u ‘e’

i

wvhenever the numbers fs are obtained from a d-system as in 2.1. In

particular,
d iou,i-1
f.o= 5 (-1)""20CT)F when d = 2u -1, and ;
o . u-1""1 — —_— :
i=u , !
A=l i 1,441 |
fO = 3 (- 1) (2 - 1—1-) (u~1)fi when d = 2u,
i=un
Proof. The first assertion of 2.4 is an easy consequence of
2.3, To justify the specific formulae for fO it suffices (in view of
2.3) to show that:
2u-1 .
for d =20 -1 and 1< j<u, = (- 1)1"112(1_1)7'(:?L = - Yq H
=< = . u-1""ji jo
i=u
2u-1
- i-u, iy,i-1,,d _ d
for d =2u and 1< j<u ~'§u(- 1) (Z_u)(u-l)in'_YjO'

Recalling the formulae for chis {which depend on the parity of d), we
see that the statements are easily verified when j = u, while for
1 < j <u they both amount to the assertion that

2u-1 .
3 (- DM ) - DED) = o
i=u

But here the effective range of summation is only for 2u -2j<i<2u -~
(since otherwise (2u—Jj-i) =0), and the desired conclusion follows from

1.2, ||
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3. Application to Eulerian manifolds and convex polytopes

A cell-complex is a finite family K of convex polytopes (the
cells of K) such that each face of a member of K is a member of X,

and the intersection of any two members of K 1is a face of both, An

n-dimensional cell-complex K will be called a simple n-manifold

(n+l -8 )

provided for 0 < s < i <n, each s-cell of K" is a face of s

i-cells of K.

3.1 PROPOSITION Suppose K is a simple n-manifold and d =n + 1.

For ¢,t K let ¢(o,t).=1 when ¢Ct or oD, and 9(d,t).=0

otherwise. Let & be the usual dimension function. Then (K,p,s) is

a d-system and hence the results 2.1 - 2.4 apply to the numbers

£os+++sfy, where £ is the number of s-cells of K for 0<s <n,

Proof. Conditions (i) and (iili) (in the definition of a d-system)
are obviously satisfied, and condition (1i) follows from the face that
when a cell-complex is formed in the natural way from a convex polytope,

its Buler characteristic must be equal to 1. |

Now we recall (from the Introduction) the notion of an Eulerian
n-manifold. This is a finite simplicial n-complex M" such that for
each s-simplex cSeMn, the Buler characteristic of the linked complex
L(¢®,M) is equal to 1 - (- 1)""°. Here, as usual, L{¢® M) is the
set of all simplexes o of M® such that ¢ N ¢ = # and the join of

¢ and ¢ is a simplex of M.

B
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3.2 THEOREM Let ,En denote the class of all Eulerian n-manifolds.

For MeE® and 0<s <n, let £,(M) denote the number of s-simplices

n
of M and let x(M) denote the Buler characteristic 3 (- l)SfS(M).
' s=0

If n=2u -1 and MeE', then x(M) =0 and the 2u-vector

(fo(M) so++,f (M) 1is a linear combination of the u row-vectors of

the u x (2u) matrix I

-1
31
uy Uy u Wy, u U
0,0 - UMD
(where zeros have been omitted). Further,
u-l u-l-j § +1 ,n-j-1
£ o= 3 (-t L= (P
n 3=0 u u-l "7j

If n=2u -2 and MeE', then the 2u-vector (%x(M),fO(M),--',fn(M))

is a linear combination of the wu row-vectors of the u X (2u) matrix

J s
n
1 2
1 3 2
1 4 5 2
U +EID T, - (O TOHET)

(where zeros have been omitted). F"urther,

ol n u-2 Ui omedol
£o= (-1 M)+ 2 (- )Y I(MTIT N E L
n u-1 i= u-1 J

EN
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Proof. For o,teM let o(d,t).=1 when o¢C T or oD T,
and o(d,T).= 0 otherwise. For sach ¢eM let &(¢) = n - dim ¢ where
dim is the usual dimension function. With d =n + 1, we claim that
(M~ {#},0,8) 1s a d-system. Since min{dim o:¢eM ~ {#}}= 0, condi-
tion (1) is evident. To verify condition (ii) we note that if ceM,
then relative to the system (M ~ {ﬁ},w,b) the characteristic x(o¢) of
¢ (in the sense of §2) is the alternating sum bg?l— 1)ipi(o), where
pi(d) is the number of simplices <eM for whichi_g Ct and &(7) = 1.
Since &(T) = un ~dim T, each simplex T D ¢ contributes (- 1)n—dimft
to the formation of X(o). The choice < = ¢ contributes nothing to the
formation of yL(¢,M), but each 7teM which properly contains o corres-
ponds to a simplex of dimension dim T - dim ¢ ~ 1 whose join with 4
is equal to T, and thus with s.=dim ¢ each such simplex T contri-

dimt-s-1

butes (- 1) to the formation of yL(g,M). Since

(- l)n—dim't: (- 1)n-s»«l(_ 1)din11~s—1

b

we have

x(0) = (- P (o) + (- 1P,

But M is an Fulerian n-manifold, so xL(d,M) =1 - (- )% and
x(6) = (= ™71 - (- )™ 4 (- )P0 =1,

This establishes condition (ii). Condition (iii) follows at once from
the relevant definitions in conjunction with the fact that M is a
simplicial complex. Thus {(M,9,8) is a d-system with & = n + 1.

It is then a routine matter to derive the assertions of 3.2 from 2.1

and 2.4. |}
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Of course the results 2.2 and 2.3 can also be dualized so as to
apply to Bulerian manifolds, but this is immediate and will be left to
the reader. We shall describe explicitly the application to convex poly-

topes, for this will be required in [5].

An n-dimensional ¢onvex polytope P will be called simplicial
provided all of its (n - 1)-faces are simplices, and it will be called
simple provided each of 1ts vertices is on exactly n edges (or, equiva-
lently, on exactly n (n - 1)-faces). From the standard polarity theory
(Weyl [6]) it follows th;t if P is an n-dimensional convex polytope

n

in .ﬁ and Oe int P, then P is simplicial if and only if the polar

body PO is simple, where

n
0 _ n,
P .= {xe&A. sup_ p I Xy, < 1}.

A ]

3.3 PROPOSITION Suppose P is a convex polytepe of dimension

n+1 and M is the cell-complex consisting of all faces of P which

j4:]

are of dimension < n. If P is simple, M is a simple n-manifold

and is subject to 3.1. If P is simplicial, M is an Fulerian

n-manifold and is subject to 3.2.

Proof. TFirst verify that M i1is a cell-complex; then clearly
M is simplicial if and only if P is simplicial. It follows by polarity
that M 1is a simple n-manifold when P simple and then by a second
use of polarity that M is actually an Eulerian n-manifold when P

is simplicial. ||
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Rn+1

Now let f(E™).= {f(M):MeEn}C_* , where

£(M) = (£o(M) 00,8 (1) C BV,

Theorem 3.2 implies that both when n = 2u -1 and when n = 2u - 2,
the set f£(EY) 1ies in a wu-dimensional linear subspace of §n+1. Our
final result shows that in fact the linear span of f(gn) is u-dimen-

gional, even when attention is restricted to those Eulerian n-manifolds '

which arise from (n + 1)-dimensional convex polytopes.

3.4 PROPOSITION For O <r<n+1, let C_ denote the

Bulerian n-manifold which is the join of the boundary B of an

r-simplex and the boundery B ., . of an (n +1 - r)-simplex.

When n = 2u -1 the matrix
n
f(Cl)

f(cg)

is of rank u, and when n = 2u - 2 the matrix

is of rank u.

[P

. - - I,
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Proof. FEach s-simplex of C? is the join of & (N - 1)-
simplex (determined by N vertices) of B, and a (b - 1) -simplex
(determined by p vertices) of Bpyj_p» where aefo,r],uef0n + r - 1],

and N + W =s + 1; conversely, each such join is an s-face of C?.

Hence with f£- .= £ (C%) we have
rs s r

. +1, 02~
£ =3 ST,
Ne[0,r] ,ue[0,n+l-r] Mtp=s+l
. - . . . r+l n+2-r _
Considering the expansion of the polynomial (1 + x)° (1 + x) =

n+3

=(1+x)"7, we see that

p2

A0, 120 M =g+l

CYHEE = 3.

It follows that f?s = (zii) whenever min(r,n + 1 -r) >s (and, in
particular, when n + 1 > 2r > 2s), while fzs = (gii) - 1 when

n+1> 2s.

Now suppose n = 2u - 1 and consider the u X u matrix

(fﬁs) (1<r<u,0¢s<u-1).

Fach element of its O-column is equal to n + 3, its 1l-column starts

with (nZB) ~ 1 and has (HZB) thereafterje.+y its s-column has

n+3) n+3)

n _ ‘ :
fss = (s+l - lbut (s+l thereafter. Subtracting the last row from
each of the others, we obtain a matrix (g?s) in which the 0-column

ends with n + 3 but has all its other entries equal to 0, while the

matrix

() (1<r¢u-1,1<s<u-1
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is triangular, with all 0O's below its main diagonal and all -~ 1l's
along the main diagonal. Hence the determinant of (g?s) is equal

to n + 3 and we have the desired conclusion for the case n = 2u - 1.

Suppose, finally, that n = 2u - 2 and note that since, for each r,

n
s ny _ n, _
szo(— Ve (c) =x(C) =2,

the rank of the matrix with which we are concerned is not changed by

adding a column of 1's. The augmented matrix has the w X u submatrix

_ n n
1 foq o1 o e
n n n
1 o 11 co o f)
9} n i1}
D faao e 0 fua)wee) ,

whose determinant is equal to 1 (as is verified by the method employed

above). This completes the proof of 3.4. ||
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